
	

HCS12 Autonomous Robotic Car

	

Prepared for

Professor Peter H.
DeVry ECET 365

Prepared by
Derek Scarborough

25 Feb 14

	

CONTENTS

PAGE
INTRODUCTION/PROJECT DESCRIPTION .. 1

PURPOSE, SCOPE, AND LIMITATIONS .. 1
SOURCES AND METHODS .. 1
REPORT ORGANIZATION ... 1
HARDWARE BLOCK DIAGRAM ... 2
INPUT/OUTPUT MAP ... 2
INPUT/OUTPUT SPECIFICATION .. 3
HARDWARE SPECIFICATION ... 3
HARDWARE THEORY OF OPERATION ... 4

VISUAL SUBSYSTEM .. 4
MOTOR SUBSYSTEM .. 4
POWER SUBSYSTEM ... 4
STATUS SUBSYSTEM .. 4

HARDWARE CONSTRUCTION .. 5
TRACK CONSTRUCTION .. 5
SOFTWARE DOCUMENTATION .. 5
SOFTWARE THEORY OF OPERATION .. 6

USER'S MANUAL ... 7

FEATURES AND BENEFITS ... 7
POWER-UP ... 7
INSTRUCTIONS .. 8

SYSTEM DOCUMENTATION .. 8

CAR.C .. 8

APPENDIX A (DATA SHEETS) .. 12

APPENDIX B (ILLUSTRATIONS) ... 13

APPENDIX C (CONSTRUCTION FIGURES) ... 14

REFERENCES ... 17

	
	
	

i

	

List of Illustrations

FIGURES PAGE

1) Hardware Block Diagram................……...…………………………………………….2

2) Power Theory Diagram...................……...………………………………....Appendix B

3) Robotic car track...................……...………………………………...............................5

4)	 Flowchart…....………………...………...……...……………………………………………..6

5a)	 Powering	 the	 car..………....………...……...…………………………………...………..7

5b)	 Resetting	 the	 car....................................……………………………………………..7
	
5c)	 Replacing	 batteries................................……………………………………………..7
	
	

	
	
	
	
	
	
	
	

ii

	

HCS12 Autonomous Robotic Car

Description
This report entails procedures, block diagrams, I/O maps, I/O definition, hardware theory,
software documentation and/or flow chart and software theory for a constructed HCS12
autonomous robotic car. This report is designed to convey pertinent information in
regards to the universality and real-world possibilities of the HCS12 and its use as
portrayed in this report as an autonomous controller. This report will discuss the use of
transducers (optical sensors) and their reading of specified systems to direct and control
the operation autonomously of the car.

Purpose, Scope, and Limitations
The purpose of this report is to explain, analyze, and instruct the use of the HCS12
robotic car. An HCS12 can be (and has been) constructed to operate and control an
autonomous robotic car. For example, the HCS12 can be programmed to control speed of
car via it's internal PWM (pulse width modulation). It also can be coded to know when to
stop, turn, reverse, etc. This report does not warrant or guarantee success in HCS12
autonomous design. These variables are independent and varies to each engineer's
specific creativity. What this report does achieve is a succinct demonstration of the
construction, programming, and demonstration of the HCS12 as the controller for an
autonomous robotic car.

Sources and Methods
The sources and methods used to gather the enclosed information were acquired via
multiple tomes. The code was written with CodeWarrior. The HCS12 car was built with
the HCS12 tower system. Ancillary information was acquired from DeVry ECET 365
weeks' 1 through 7 course and lectures. Also, two major tomes were used to assist in
development: Microcontrollers and Embedded Systems (Mazidi, 2009) and Embedded
Microcomputer Systems (Valvano, 2012). Also, the PmodHB5, PmodLS1, IG-22GM,
OPB704, TWR-Breadboard, and HCS12 data sheets were utilized.

Report Organization
This report will begin with a hardware block diagram. Next, an I/O map will be
discussed. Following that will be I/O definition. Hardware theory of operation will be
next. Then software and / or a flowchart will be discussed. There will be a discussion on
software theory of operation. A user's manual of car operation will be introduced. Any
relevant hardware and software support documentation will be given. Troubleshooting
will be addressed as necessary. The report will conclude with an appendix.

1

	

Hardware Block Diagram

 Figure 1: Hardware block diagram

Input / Output Map
Input:
 IR Sensors (x4): IR Sensor (Passenger) - Lap counter
 IR Sensor (Passenger) - FSM routine for operation and control
 IR Sensor (Driver) - FSM routine for operation and control
 IR Sensor (Driver) - Lap counter
 PmodLS1: Converts IR sensors to digital inputs
Output:
 LEDs: PTT, Pins 7:4, Outputs state of motors (straight, right, left, stop)
 PWM: 250 Period / 171 Duty cycle to (2 x DC motors)
 PmodHB5 (x2): H-bridge driver for small/medium sized DC motor
 IG-22GM DC Motor (x2): DC geared motor to operate car wheels

2

	

Input/Output Specfication
Reflective object sensor
 Optek Technology OPB704
 Input diode: Forward DC current 40mA
 Reverse DC voltage 2V
 Power dissipation 100mW
 Output Photodetector: Emitter-Collector voltage 5V
 Collector DC Current 25mA
 Power dissipation 100mW
PmodLS1: 5V operation
 Input: OPB704 IR sensors (x4)
 Output: Logical 0/1 (0 for black/1 for white)
PmodHB5: Motor operation up to 12V
 H-bridge operation 5V
 Input: Enable via PWM
 Direction via PortB
 Output: On/Off via Enable
 Direction control
 PmodHB5 cabling
IG-22GM DC Motor: 12V operation

Hardware Specification
System: HCS12 Tower
 Primary/Secondary elevators
 HCS12 MCU board
 Tower breadboard: connectivity and component integration into HCS12 Tower
Power: 4 x Li-ion 18650 (14.8V)
Components parts:
 2 x 1000µF capacitors
 2 x 0.1 µF capacitors
 1 x 100mH inductor
 1 x 7805 5V voltage regulator
 1 x 7812 12V voltage regulator
Chassis:
 2 x wheels
 3 x SPST toggle switches
 1 x drag post
 1 x wiring connect terminal
 Copper cabling for voltage and ground wiring

3

	

Hardware Theory of Operation
VISUAL SUBSYSTEM (INPUT)

The operation of the autonomous car, largely, depends on the input of the 4 optical
sensors. Two middle sensors (black to white) for driver and passenger dictate control of
the car. If both sensors are on black, the car moves forward. If driver sensor reflects
white, only the driver motor rotates while passenger motor stops until both are logical 0
(on black). The reverse holds true for passenger; if passenger sensor reflects white,
passenger motor spins while driver motor stops until logical 0 for both middle sensors.

The two outer sensors are used as part of key wake-up interrupts which is fed into an
RTI. If both sensors (one is Port J interrupt 24, one is Port P interrupt 56) report logical 0
(black) the RTI increases count by one. Once count becomes two, the vehicle stops. Both
outer sensors happen simultaneously, although Port J will happen first due to higher
priority. The RTI is constantly checking at about 100ms.

The optical sensors all send logical 0/1 to the MCU via the PmodLS1. The PmodLS1 is
able to convert analog optical input to digital input signals before sending to HCS12.

MOTOR SUBSYSTEM (OUTPUT)

The HCS12 is capable of providing digital energy to the PmodHB5. The PmodHB5 takes
this digital energy and drives its the two DC motors. The PWM chosen for this car is 250
period with a 68.5% DC of 171 duty cycle. The motor requires approximately 328mA of
current which is provided via the PWM to the PmodHB5 to the motors.

POWER SUBSYSTEM

The power subsystem consists mainly of 4 lithium-ion batteries at 3.7V/3600mAh each
totaling 14.8V. The 14.8V is divvied up between two voltage regulators. One regulator is
the 7812 supplying an average of 10.84V - 11.89V to DC motors. A 12V regulator was
chosen to ensure voltage supplied did not exceed max voltage to DC motor of 12V. The
2nd regulator is the 7805. The 7805 supplies a regulated voltage average of 5.05V to the
HCS12 (refer to Appendix B figure 2). This is below the max of 5.5V.

STATUS SUBSYSTEM (OUTPUT)

The 4 LEDs indicate what operation is in effect. The LEDs correlate to current PWME
value state. If 0x0A (both motors on), the LEDs should be LED4 and LED2. If 0x08
(driver motor on), LED4 on. For 0x02 (passenger motor on), LED2 on. And for 0x00
(both motors off), all LEDs on.

4

	

Hardware Construction
Aside from the standard directions of construction, various creative decisions were
implemented. A Dremel rotary tool was used to create alignment of tower elevator holes
with chassis. The Dremel was also used to create large enough holes for 3 SPST
switches. Soldering of ground to connect terminal to ensure solid ground for entire
system was also implemented. Refer to Appendix C for construction illustrations.

Track Construction

The robotic car track was created with 2 40x30 foam boards. The boards were combined
to form an 80x60 track. The track itself was created with tacks and string. The oval was
initially traced with pencil. Blue painters tape was then overlaid over the pencil trace.
Finally, black gorilla duct tape was placed over the painters tape.

 Figure 3: Robotic car track (80x60)

Software Documentation

High-level block diagram
 car.c
 derivative.h
 mc9s12g128.h

Type of files
 *C language used for all files (inline assembly for enable interrupts)
 *Freescale CodeWarrior IDE used for programming environment
 *car.c functions:
 void init_ISR(void); //set up ISRs
 void init_PORTS(void); //set up Ports
 void init_PWM(void); //set up PWM

5

	

Flowchart

Figure 4: Flowchart

6

	

Software Theory of Operation
The software for the car uses two semaphores (flags) and one count variable to control
lap count. The PWM does not vary during operation and is set at 68% duty cycle.
Initialization begins with the following 3 functions:

• init_ISR()
 This function sets up the two key wake-up interrupts and RTI.

• init_PORTS()
 This function initializes basic ports used by the MCU. It also initializes the
 status LEDs for status of car.

• init_PWM()
 This function initializes the car to its designated duty cycle and thus its
 speed.
After initialization, interrupts are enabled (asm cli) and a for loop is entered until laps
around reach 2. Key wake-up PJ7 is set anytime it crosses black and a flag is
subsequently set. Simultaneously, if the black crossing is valid, key wake-up PP7 is to be
triggered and its flag is set. If both PJ7 and PP7 flags are set, they are utilized by the RTI.
The RTI is constantly checking for both flags to be set. When this condition is met, the
RTI increments count by one (count++) and clears its flag and PJ7 and PP7 flags. When
this condition is met a second time, the count increments to two and the car stops.

USER'S MANUAL
Features and Benefits
This HCS12 robotic car demonstrates MCU power and how code and hardware interact
together. This car is representative of autonomous vehicles, such as the Google car, at a
scaled down version. Additional benefits include wireless implementation for
communications with other MCUs and architectures, control via computer, and even
adding proximity sensors to avoid objects. Status of operation is given via LEDs.

Power-up
To turn on system, simply toggle power switch on/off. Also to ensure memory, RTI
registers et. al are cleared, it is recommended to push reset button as well.

Understanding the System

Figure 5a: Powering car Figure 5b: Resetting car Figure 5c: Replacing batteries
7

	

5A. Powering car via toggle switch
5B. Resetting car via HCS12 reset button
5C. Replacing batteries with similar Li-ion 18650 3.7V

Instructions
To power-up, toggle power switch as shown above to the left for on. Hit reset button to
ensure clear memory and registers. For best operation, ensure both middle (driver and
passenger) sensors are both off and in line with black tape.

SYSTEM DOCUMENTATION
car.c:
/***
 * *Programmer: Derek Scarborough
 * *
 * *23 Feb 14
 * *
 * *ECET365 Professor Peter Han
 * *
 * *Assignment: Course Project Autonomous Robotic Car
 * *
 * *File name: car.c
 * *
 * *Description: This program causes the robotic car to perform two laps of track and
 * * stop after two laps
 * *
 * *Input: IR sensor via PmodLS1 to HCS12
 * *
 * *Output: PWM to motors via PmodHB5 and LEDs for status
 * *
***/
#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */

void init_ISR(void);
void init_PORTS(void);
void init_PWM(void);

#define Driver 0x01
#define Passenger 0x02

#define Driver_On 0x08
#define Passenger_On 0x02

#define Driver_DIR 0x20
#define Passenger_DIR 0x10

8

	

unsigned char sensor; // sensor for the inputs
unsigned char flagCheckered; // Port P 7 sensor; passenger side
unsigned char checkeredFlag; // Port J 7 sensor; driver side
unsigned char count;

const struct State
{
 unsigned char PWME_value; // Output data to PWME
 unsigned char stateLED;
 const struct State *Next[4]; // Next state if input = 0,1 */
};

#define S0 &fsm[0]
#define S1 &fsm[1]
#define S2 &fsm[2]
#define S3 &fsm[3]

typedef const struct State StateType;

StateType fsm[4]=
{
 {0x0A,0x10,{S0,S1,S2,S3}}, // S0 means both motors should move
 {0x08,0x20,{S0,S1,S2,S3}}, // S1 means drive motor moves only
 {0x02,0x40,{S0,S1,S2,S3}}, // S2 means passenger motor moves only
 {0x00,0x80,{S3,S3,S3,S3}} // S3 means both motors should stop
};

void main(void)
{
 //initial states
 StateType *Pt; // pointer to present state
 Pt = S0;
 count = 0;
 checkeredFlag = 0;
 flagCheckered = 0;

 asm sei //disable interrupts
 init_ISR();
 init_PORTS();
 init_PWM();
 asm cli //enable interrupts

 for(;;)
 {

9

	

 sensor = PORTA & 0x03; // bit 0 is for driver, bit 1 for passenger
 Pt = Pt->Next[sensor]; // Move to the next state
 PWME = Pt->PWME_value; // load PWME value to its register
 PTT &= ~Pt->stateLED; // Turn the state LED on

 if (count == 2)
 PWME = 0x00;
 }
}

/***************** ISRs********************/
#pragma CODE_SEG NON_BANKED
void interrupt 24 checkeredFlagISR(void)
{
 if (PIFJ & 0x80)
 checkeredFlag = 1;
 else
 checkeredFlag = 0;

 PIFJ = 0x80;
}

void interrupt 56 flagCheckeredISR(void)
{
 if (PIFP & 0x80)
 flagCheckered = 1;
 else
 flagCheckered = 0;

 PIFP = 0x80;
}

void interrupt 7 checkeredRTI(void)
{
 if (checkeredFlag && flagCheckered)
 {
 count++;
 checkeredFlag = 0;
 flagCheckered = 0;
 }

 CPMUFLG_RTIF = 1;
}
#pragma CODE_SEG DEFAULT

10

	

void init_ISR()
{
 //RTI
 CPMURTI = 0xEF;
 CPMUFLG_RTIF = 1;
 CPMUINT_RTIE = 1;

 //Key wake-up interrupt PJ7
 DDRJ &= ~0x80;
 PPSJ |= 0x80;
 PERJ &= ~0x80;
 PIEJ = 0x80;
 PIFJ = 0x80;

 //Key wake-up interrupt PP7
 DDRP &= ~0x80;
 PPSP |= 0x80;
 PERP &= ~0x80;
 PIEP = 0x80;
 PIFP = 0x80;
}

void init_PORTS()
{
 DDRB |= 0x30; // Let PB4, PB5 becomes OUTPUT
 DDRT = 0xF0; // PORT T7-T4 output (LEDs)
 PTT = 0xF0; // initialize with LEDs off
 PORTB |= Driver_DIR; // Set driver motor direction
 PORTB &= ~Passenger_DIR;// Set passenger motor direction
 DDRA = 0x00; // PORTA as inputs
}
void init_PWM()
{
 PWMCAE = 0x00; // left aligned
 PWMCLK = 0x00; // Ch. 0 - Ch. 1 source is clock A, ch.2 & ch 3 use clock B
 PWMCLKAB = 0x00; // Use clock A and B respectively
 PWMPOL = 0x0A; // initial HIGH output on ch. 1 and 3 (Use odd # registers)
 PWMPRCLK = 0x33; // Clk A pre-scale = 8
 PWMCTL = 0x30; // CON01 = '1' and Con23 = '1'
 PWMPER01 = 250;
 PWMPER23 = 250;
 PWMDTY01 = 171; // 68.5% duty cycle
 PWMDTY23 = 171; // 68.5% duty cycle
}

11

	

Appendix A Data Sheets

MC9S12G Family Reference Manual and Data Sheet, Rev.1.23 (2013)

Digilent PmodHB5 2A H-Bridge Reference Manual, Rev.D (2012)

Digilent PmodLS1 Infrared Light Detector Module Ref. Manual, Rev.A (2007)

IG-22GM DC Carbon-brush Geared Motor Series (2010)

Reflective Object Sensor OPB7xx Reference Manual, Issue B.3 (2009)

DeVry TWR Breadboard.pdf

ROBO_car_project.pdf (2013)

PmodLS1_sch.pdf (2007)

PmodHB5_sch.pdf (2006)

12

	

Appendix B Illustrations/Schematics

 Figure 1: Hardware block diagram Figure 2: Power theory schematic

Figure 3: Robotic car track (80x60) Figure 4: Flowchart

Figure 5a: Powering car Figure 5b: Resetting car Figure 5c: Replacing batteries

13

	

Appendix C Construction Illustrations

Humble beginnings-1 wheel Bottom chassis w/AA holder Testing of 1 motor and wheel

Testing IR sensor Chassis gaining steam (was still set on AA at time)

Testing IR sensors w/wheel More IR testing w/wheels

14

	

Bona-fide build 90% and changes still to be made

Breadboard full of goodies Still thinking of AAs?

Decision made-Li-ions for sure Connect terminal with ground soldered

15

	

Finished product raring to go

16

	

REFERENCES

Hill, W. & Horowitz, P. (1999).The art of electronics. Cambridge [u.a.: Cambridge
 Univ. Press.

Mazidi, M. A., & Causey, D. (2009). HCS12 microcontroller and embedded
 systems: Using Assembly and C with CodeWarrior. Upper Saddle River:
 Pearson/Prentice Hall.

Monk, S. (n.d.). Hacking electronics: An illustrated DIY guide for makers and
 hobbyists.

Platt, C. (2012). Encyclopedia of electronic components.

Scherz, P., & Monk, S. (2013). Practical electronics for inventors. New York:
 McGraw-Hill.

Schildt, H. (2000). C: The complete reference. Berkeley: Osborne McGraw-Hill.

Valvano, J. W. (2012). Embedded microcomputer systems: Real time interfacing. S.l.:
 Cengage Learning.

17

